Tag Archives: Docker

Resources for Microservices and Business Domain Solutions for the Cloud Architect / Microservices Architect

First you have to understand that Java and PHP are worlds completely different.

In PHP you’ll use a Frameworks like Laravel, or Symfony, or Catalonia Framework (my Framework) :) and a repo or many (as the idea is that the change in one microservice cannot break another it is recommended to have one git repo per Service) and split the requests with the API Gateway and Filters (so /billing/ goes to the right path in the right Server, is like rewriting URLs). You’ll rely in Software to split your microservices. Usually you’ll use Docker, but you have to add a Web Server and any other tools, as the source code is not packet with a Web Server and other Dependencies like it is in Java Spring Boot.

In Java you’ll use Spring Cloud and Spring Boot, and every Service will be auto-contained in its own JAR file, that includes Apache Tomcat and all other Dependencies and normally running inside a Docker. Tcp/Ip listening port will be set at start via command line, or through environment. You’ll have many git repositories, one per each Service.

Using many repos, one per Service, also allows to deploy only that repository and to have better security, with independent deployment tokens.

It is not unlikely that you’ll use one language for some of your Services and another for other, as well as a Database or another, as each Service is owner of their data.

In any case, you will be using CI/CD and your pipeline will be something like this:

  1. Pull the latest code for the Service from the git repository
  2. Compile the code (if needed)
  3. Run the Unit and Integration Tests
  4. Compile the service to an executable artifact (f.e. Java JAR with Tomcat server and other dependencies)
  5. Generate a Machine image with your JAR deployed (for Java. Look at Spotify Docker Plugin to Docker build from Maven), or with Apache, PHP, other dependencies, and the code. Normally will be a Docker image. This image will be immutable. You will probably use Dockerhub.
  6. Machine image will be started. Platform test are run.
  7. If platform tests pass, the service is promoted to the next environment (for example Dev -> Test -> PreProd -> Prod), the exact same machine is started in the next environment and platform tests are repeated.
  8. Before deploying to Production the new Service, I recommend running special Application Tests / Behavior-driven. By this I mean, to conduct tests that really test the functionality of everything, using a real browser and emulating the acts of a user (for example with BeHat, Cucumber or with JMeter).
    I recommend this specially because Microservices are end-points, independent of the implementation, but normally they are API that serve to a whole application. In an Application there are several components, often a change in the Front End can break the application. Imagine a change in Javascript Front End, that results in a call a bit different, for example, with an space before a name. Imagine that the Unit Tests for the Service do not test that, and that was not causing a problem in the old version of the Service and so it will crash when the new Service is deployed. Or another example, imagine that our Service for paying with Visa cards generates IDs for the Payment Gateway, and as a result of the new implementation the IDs generated are returned. With the mocked objects everything works, but when we deploy for real is when we are going to use the actual Bank Payment. This is also why is a good idea to have a PreProduction environment, with PreProduction versions of the actual Services we use (all banks or the GDS for flights/hotel reservation like Galileo or Amadeus have a Test, exactly like Production, Gateway)

If you work with Microsoft .NET, you’ll probably use Azure DevOps.

We IT Engineers, CTOs and Architects, serve the Business. We have to develop the most flexible approaches and enabling the business to release as fast as their need.

Take in count that Microservices is a tool, a pattern. We will use it to bring more flexibility and speed developing, resilience of the services, and speed and independence deploying. However this comes at a cost of complexity.

Microservices is more related to giving flexibility to the Business, and developing according to the Business Domains. Normally oriented to suite an API. If you have an API that is consumed by third party you will have things like independence of Services (if one is down the others will still function), gradual degradation, being able to scale the Services that have more load only, being able to deploy a new version of a Service which is independent of the rest of the Services, etc… the complexity in the technical solution comes from all this resilience, and flexibility.

If your Dev Team is up to 10 Developers or you are writing just a CRUD Web Application, a PoC, or you are an Startup with a critical Time to Market you probably you will not want to use Microservices approach. Is like killing flies with laser cannons. You can use typical Web services approach, do everything in one single Https request, have transactions, a single Database, etc…

But if your team is 100 Developer, like a big eCommerce, you’ll have multiple Teams between 5 and 10 Developers per Business Domain, and you need independence of each Service, having less interdependence. Each Service will own their own Data. That is normally around 5 to 7 tables. Each Service will serve a Business Domain. You’ll benefit from having different technologies for the different needs, however be careful to avoid having Teams with different knowledge that can have hardly rotation and difficult to continue projects when the only 2 or 3 Devs that know that technology leave. Typical benefit scenarios can be having MySql for the Billing Services, but having NoSQL Database for the image catalog, or to store logs of account activity. With Microservices, some services will be calling other Services, often asynchronously, using Queues or Streams, you’ll have Callbacks, Databases for reading, you’ll probably want to have gradual and gracefully failure of your applications, client load balancing, caches and read only databases/in-memory databases… This complexity is in order to protect one Service from the failure of others and to bring it the necessary speed under heavy load.

Here you can find a PDF Document of the typical resources I use for Microservice Projects.

You can also download it from my github repository:

https://github.com/carlesmateo/awesome-microservices

Do you use other solutions that are not listed?. Leave a message. I’ll investigate them and update the Document, to share with the Community.

Adding my Server as Docker, with PHP Catalonia Framework, explained

The previous day I explained how I migrated my old Server (Amazon Instance) to a more powerful model, with more recent OS, WebServer, etc…

This was interesting under the point of view of dealing with elastic Ip’s, Amazon AWS Volumes, etc… but was a process basically manual. I could have generated an immutable image to start from next time, but this is another discussion, specially because that Server Instance has different base Software, including a MySql Database.

This time I want to explain, step by step, how to conainerize my Server, so I can port to different platforms, and I can be independent on what the Server Operating System is. It will work always, as we defined the Operating System for the Docker Container.

So we start to use IaC (Infrastructure as Code).

So first you need to install docker.

So basically if your laptop is an Ubuntu 18.04 LTS you have to:

sudo apt install docker.io

Start and Automate Docker

The Docker service needs to be setup to run at startup. To do so, type in each command followed by enter:

sudo systemctl start docker
sudo systemctl enable docker

Create the Dockerfile

For doing this you can use any text editor, but as we are working with IaC why not use a Code Editor?.

You can use the versatile PyCharm, that has modules for understanding Docker and so you can use Control Version like git too.

This is the Dockerfile

FROM ubuntu:19.04

MAINTAINER Carles <carles@carlesmateo.com>

ARG DEBIAN_FRONTEND=noninteractive

#RUN echo "nameserver 8.8.8.8" > /etc/resolv.conf

RUN echo "Europe/Ireland" | tee /etc/timezone

# Note: You should install everything in a single line concatenated with
#       && and finalising with apt autoremove && apt clean
#       In order to use the less space possible, as every command is a layer
RUN apt-get update && apt-get install -y apache2 ntpdate libapache2-mod-php7.2 \
mysql-server php7.2-mysql php-dev libmcrypt-dev php-pear git && \
apt autoremove && apt clean

RUN a2enmod rewrite

RUN mkdir -p /www

# In order to activate Debug
# RUN sed -i "s/display_errors = Off/display_errors = On/" /etc/php/7.2/apache2/php.ini 
# RUN sed -i "s/error_reporting = E_ALL & ~E_DEPRECATED & ~E_STRICT/error_reporting = E_ALL/" /etc/php/7.2/apache2/php.ini 
# RUN sed -i "s/display_startup_errors = Off/display_startup_errors = On/" /etc/php/7.2/apache2/php.ini 
# To Debug remember to change:
# config/{production.php|preproduction.php|devel.php|docker.php} 
# in order to avoid Error Reporting being set to 0.

ENV PATH_CATALONIA_CACHE /www/www.cataloniaframework.com/cache/

ENV APACHE_RUN_USER  www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR   /var/log/apache2
ENV APACHE_PID_FILE  /var/run/apache2/apache2.pid
ENV APACHE_RUN_DIR   /var/run/apache2
ENV APACHE_LOCK_DIR  /var/lock/apache2
ENV APACHE_LOG_DIR   /var/log/apache2

RUN mkdir -p $APACHE_RUN_DIR
RUN mkdir -p $APACHE_LOCK_DIR
RUN mkdir -p $APACHE_LOG_DIR

# Remove the default Server
RUN sed -i '/<Directory \/var\/www\/>/,/<\/Directory>/{/<\/Directory>/ s/.*/# var-www commented/; t; d}' /etc/apache2/apache2.conf 

RUN rm /etc/apache2/sites-enabled/000-default.conf

COPY www.cataloniaframework.com.conf /etc/apache2/sites-available/

RUN chmod 777 $PATH_CATALONIA_CACHE
RUN chmod 777 $PATH_CATALONIA_CACHE.
RUN chown --recursive $APACHE_RUN_USER.$APACHE_RUN_GROUP $PATH_CATALONIA_CACHE

RUN ln -s /etc/apache2/sites-available/www.cataloniaframework.com.conf /etc/apache2/sites-enabled/

# Note: You should clone locally and COPY to the Docker Image
#       Also you should add the .git directory to your .dockerignore file
#       I made this way to show you and for simplicity, having everything
#       in a single file
RUN git clone https://github.com/cataloniaframework/cataloniaframework_v1_sample_website /www/www.cataloniaframework.com
RUN git checkout tags/v.1.16-web-1.0
# In order to change profile to Production
# RUN sed -i "s/define('ENVIRONMENT', DOCKER)/define('ENVIRONMENT', PRODUCTION)/" /var/www/www.cataloniaframework.com/config/general.php 

# for debugging
#RUN apt-get install -y vim

RUN service apache2 restart

EXPOSE 80

CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

The www.cataloniaframework.com.conf file

As you saw in the Dockerfile you have the line:

COPY www.cataloniaframework.com.conf /etc/apache2/sites-available/

This will copy the file www.cataloniaframework.com.conf that must be in the same directory that the Dockerfile file, to the /etc/apache2/sites-available/ folder in the conainer.

<VirtualHost *:80>
    ServerAdmin webmaster@cataloniaframework.com
    # Uncomment to use a DNS name in a multiple VirtualHost Environment
    #ServerName www.cataloniaframework.com
    #ServerAlias cataloniaframework.com
    DocumentRoot /www/www.cataloniaframework.com/www
    <Directory /www/www.cataloniaframework.com/www/>
            Options Indexes FollowSymLinks MultiViews
            AllowOverride All
            Order allow,deny
            allow from all
            Require all granted
    </Directory>
    ErrorLog ${APACHE_LOG_DIR}/www-cataloniaframework-com-error.log
    # Possible values include: debug, info, notice, warn, error, crit,
    # alert, emerg.
    LogLevel warn
    CustomLog ${APACHE_LOG_DIR}/www-cataloniaframework-com-access.log combined
</VirtualHost>

Stoping, starting the docker Service and creating the Catalonia image

service docker stop && service docker start

To build the Docker Image we will do:

docker build -t catalonia . --no-cache

I use the –no-cache so git is pulled and everything is reworked, not kept from cache.

Now we can run the Catalonia Docker, mapping the 80 port.

docker run -d -p 80:80 catalonia

If you want to check what’s going on inside the Docker, you’ll do:

docker ps

And so in this case, we will do:

docker exec -i -t distracted_wing /bin/bash

Finally I would like to check that the web page works, and I’ll use my preferred browser. In this case I will use lynx, the text browser, cause I don’t want Firefox to save things in the cache.